Industry: IT and Telecommunication
Published Date: January-2024
Format: PPT*, PDF, EXCEL
Delivery Timelines: Contact Sales
Number of Pages: 218
Report ID: PMRREP33672
The global predictive maintenance market is forecast to expand at a CAGR of 21.6% and thereby increase from a value of US$8.6 Bn in 2023, to US$34.1 Bn by the end of 2030.
Attributes |
Key Insights |
Market Size (2023E) |
US$8.6 Bn |
Projected Market Value (2030F) |
US$34.1 Bn |
Global Market Growth Rate (CAGR 2023 to 2030) |
21.6% |
Historical Market Growth Rate (CAGR 2018 to 2022) |
14.8% |
Predictive maintenance (PM) is an advanced methodology for maintenance that anticipates the failure of apparatus or equipment through the utilization of sensor technologies, machine learning, and data analytics. Through the examination of historical and real-time data, PM endeavours to predict potential problems in advance, thereby facilitating timely maintenance and diminishing unscheduled periods of inactivity. Implementing this data-driven approach optimizes operational processes, increases asset longevity, and reduces maintenance expenditures, rendering it an indispensable element across diverse sectors.
As industries prioritize operational efficiency, the demand for sophisticated solutions in the predictive maintenance size has increased significantly. The integration of IoT technologies, artificial intelligence, and analytics tools to enable real-time monitoring and predictive analysis is a defining characteristic of the market. The rapid expansion of the predictive maintenance market is evident in various sectors, including healthcare, transportation, and manufacturing, where the emphasis is on reducing downtime, optimizing resource allocation, and ensuring equipment dependability.
Technological Advancements in IoT and Sensors
Market growth for predictive maintenance is fuelled by the Internet of Things (IoT) and sensor technology advancements. A wealth of real-time data is produced as industries integrate IoT devices and sensors into their apparatus and equipment in an escalating fashion. By monitoring a variety of operational parameters, including pressure, temperature, and vibration, these devices offer a comprehensive view of the health of the apparatus.
Predictive maintenance market solutions can identify potential malfunctions in advance through the analysis of patterns and detection of anomalies made possible by the continuous flow of data. By adopting a proactive approach, organizations can reduce downtime, optimize maintenance schedules, and prolong the lifetime of critical assets. As a result, predictive maintenance solutions are gaining traction across various sectors.
The necessity to optimize performance and minimize operational expenses is a substantial catalyst for the growth of the predictive maintenance industry. Conventional maintenance methods frequently depend on reactive or predetermined schedules, resulting in avoidable periods of inactivity and exorbitant costs associated with upkeep. In contrast, predictive maintenance enables businesses to transition from a reactive to a proactive maintenance model.
Through the anticipation of potential equipment malfunctions, organizations can precisely schedule maintenance operations, thereby preventing avoidable periods of inactivity and optimizing resource allocation. By enhancing operational efficiency and decreasing overall maintenance costs, this cost-effective approach is particularly appealing to sectors aiming to optimize the dependability and functionality of their vital resources.
Difficulties in Integrating Data, and Shortages in Skills
Although predictive maintenance shows potential for success, it is hampered by formidable obstacles including a scarcity of proficient personnel and difficulties in integrating data. For many organizations, the task of integrating disparate data sources and formats into a unified system for meaningful analysis continues to be complex. Successful implementation of predictive maintenance is contingent upon the capacity to incorporate data from a variety of sensors, equipment, and enterprise systems.
Furthermore, an impediment is presented by the scarcity of proficient professionals with expertise in the fields of data science, machine learning, and analytics. Organizations frequently encounter challenges when attempting to establish and sustain resilient predictive maintenance market strategies because of inadequate internal expertise. It is imperative to confront these obstacles to fully harness the capabilities of predictive maintenance solutions throughout various industries.
The Complexity of Integration and the Presence of Legacy Systems
One notable obstacle confronting the predictive maintenance industry pertains to the intricacy entailed in incorporating sophisticated predictive analytics into pre-existing infrastructure, specifically in the context of legacy systems. Numerous industries utilize a combination of new and used equipment, and the process of retrofitting these systems with the required sensors and data analytics functionalities can be complex. The incompatibility of legacy systems concerning data integration frequently presents an obstacle in fully capitalizing on the capabilities of predictive maintenance.
To surmount this obstacle and guarantee a seamless integration of predictive maintenance solutions, organizations must establish standardized protocols and interfaces. This will enable them to leverage the advantages of data-driven maintenance approaches while managing the intricacies of varied and frequently obsolete technological environments.
Leveraging Industry 4.0 Integration in Smart Manufacturing Holds Significant Potential
Significant potential exists for augmenting operational efficiency in intelligent manufacturing through the integration of predictive maintenance and Industry 4.0 initiatives. An increasing synergy exists between predictive maintenance market and the fourth industrial revolution, which is being embraced by industries through the utilization of advanced analytics and the Industrial Internet of Things (IoT).
The incorporation of predictive maintenance into intelligent manufacturing processes facilitates the instantaneous surveillance of equipment functionality and health. This practice not only reduces unforeseen periods of inactivity but also empowers predictive analytics to enhance the efficiency of production schedules, resource distribution, and equipment. The integration of predictive maintenance and Industry 4.0 facilitates a trajectory for manufacturers to attain elevated degrees of automation, dependability, and global market competitiveness.
Moreover, the healthcare industry presents a rapidly expanding potential for the implementation of predictive maintenance. As the dependence on medical equipment for patient care continues to grow, healthcare facilities and hospitals can utilize predictive maintenance to safeguard vital assets by ensuring their optimal performance and dependability. Healthcare organizations can adopt predictive maintenance solutions to proactively monitor the state of medical equipment, including ventilators and MRI machines.
This enables the organization to anticipate potential equipment failures and subsequently plan maintenance activities. In addition to improving the safety of patients and the deliverance of care, this decreases the financial burden on operations caused by equipment downtime. The potential of predictive maintenance to transform maintenance practices beyond the confines of conventional manufacturing domains is exemplified by its expansion into the healthcare sector.
Analysts foresee a prosperous and ever-evolving trajectory for the predictive maintenance propelled by ongoing technological progress and an expanding recognition of its advantages across various sectors. With the advancement of artificial intelligence, machine learning, and IoT technologies, the predictive maintenance domain is positioned to transform, providing solutions that are more sophisticated and precise. Industry 4.0 practice integration and market expansion into emergent markets are anticipated to contribute to the expansion of the market. Additionally, the market's trajectory will be determined by the growing adoption of cloud-based solutions and the emphasis placed on data security and privacy.
The market is anticipated to experience a significant increase in demand as organizations acknowledge the critical importance of predictive maintenance in reducing outages, optimizing resource allocation, and improving overall operational efficiency. In addition, the continuous digitization trends and the need for sustainable practices are anticipated to propel the incorporation of predictive maintenance across various industries, thereby reinforcing its status as an essential component of contemporary asset management strategies.
Supply-side Dynamics
The predictive maintenance market is distinguished by an expanding ecosystem of technology providers providing an extensive array of solutions on the supply side. Software developers who possess expertise in the fields of data analytics, machine learning, and artificial intelligence are at the vanguard of this movement, creating sophisticated algorithms that possess the ability to accurately forecast equipment malfunctions. These organizations consistently enhance their products by integrating the most recent technological advancements, which facilitate the smooth operation of sensors, Internet of Things devices, and pre-existing enterprise systems. Software vendors operate in a highly competitive environment, which promotes innovation.
In this climate, providers endeavour to deliver solutions that not only anticipate prospective challenges but also provide intuitive interfaces and customization choices to cater to the unique requirements of various industries. The market is bolstered by a strong network of service providers, which provides implementation, consulting, and support services, in addition to software providers. These companies play an essential part in assisting organizations in the deployment of predictive maintenance solutions, assuring seamless integration into existing workflows.
As the demand for predictive maintenance services expands, these providers are diversifying their range of services, providing expertise in data management, integration of systems, and training to empower organizations in optimizing the value derived from predictive maintenance solutions. The supply-side dynamics are further influenced by strategic agreements and partnerships, as technology providers frequently partner with sensor manufacturers, IoT platform developers, and other stakeholders to develop comprehensive and interoperable solutions that address the evolving needs of industries accepting predictive maintenance strategies.
Which Solution is Anticipated to Spearhead?
The Software Segment Steers Revenue Generation
The solution segment is segmented into software, and services. The software segment is bifurcated into Standalone and Integrated. Further, the services segment is categorized into consulting, integration & implementation, training, and support & maintenance. The predictive maintenance market is dominated by the software segment, as organizations invest more and more in advanced analytics and machine learning solutions. Predictive maintenance software enables organizations to proactively oversee equipment health through the facilitation of data analysis, anomaly detection, and predictive modelling.
As a result of the increasing need for professionals with knowledge of implementing and managing predictive maintenance solutions, the services sector is expanding at the quickest rate. The market for services is experiencing significant growth due to the increasing demand for consulting, training, and support services as organizations strive to incorporate predictive maintenance into their operations in an efficient manner.
Which is the Preferred Deployment Mode?
Cloud Solutions Lead on Account of Benefits Like Remote Access, Real-Time Processing, and Seamless Integration
The deployment segment is bifurcated into on-premises, and cloud-based. Because organizations prioritize scalability, flexibility, and cost-effectiveness, the cloud-based deployment segment dominates. The pervasive adoption of cloud-based solutions is propelled by their remote accessibility, real-time data processing, and seamless integration with other cloud services.
Although cloud-based solutions are prevailing, there is substantial growth in the on-premises deployment sector. This can be attributed to various factors, including the necessity for enhanced control over sensitive information, regulatory compliance obligations, and concerns regarding data security. On-premises deployments are becoming more prevalent in specific sectors that have implemented rigorous data stewardship policies, which has contributed to the segment's rapid expansion.
Which Enterprise Size Registers the Maximum Adoption?
Large Enterprises Take the Lead
The enterprise size segment is sub-segmented into small offices (1-9 employees), small enterprises (10-99 employees), medium-sized enterprise (100-499 employees), large enterprises (500-999 employees), and very large enterprises (1,000+ employees). The largest market segment for predictive maintenance consists of large enterprises, which are propelled by their considerable asset portfolios and the requirement for advanced maintenance approaches. Due to the extensive and varied equipment portfolios of these organizations, predictive maintenance is critical for maximizing operational efficiency and minimizing disruption.
Small and medium-sized enterprises (SMEs) are the most rapidly expanding sector due to their growing awareness of the preventative maintenance benefits that can be derived from costly equipment malfunctions. The increasing accessibility of scalable and cost-effective predictive maintenance solutions that are customized to meet the unique requirements and limited resources of small enterprises is driving the adoption trend.
Which End-use Industry Will Dominate in Terms of Sales?
Manufacturing Industry Maintains Dominance
The end use industry segment is categorized into automotive, healthcare, manufacturing, transportation, energy and utility, and others. The manufacturing sector establishes itself as the most significant segment within the predictive maintenance market, driven by its substantial dependence on machinery and equipment. To optimize production processes, decrease equipment downtime, and improve overall efficiency, the manufacturing sector is a major adopter of predictive maintenance solutions.
The healthcare industry is the most rapidly expanding sector due to the expanding implementation of predictive maintenance in medical equipment. Healthcare facilities are coming to understand the significance of guaranteeing the dependability and peak performance of vital equipment, including patient monitoring systems and diagnostic devices, to provide patients with continuous and superior care.
North America’s Pre-eminence Prevails
The market for predictive maintenance is dominated by the region of North America due to its well-developed technological infrastructure, extensive implementation of Industry 4.0 practices, and significant focus on optimizing operational efficiency. Predictive maintenance is given high priority by industries in North America, specifically in the transportation and manufacturing sectors, to minimize periods of inactivity, improve overall efficiency, and decrease operational expenditures. The proactive adoption of technological advancements and the presence of significant market participants are factors that contribute to the region's leadership position in the predictive maintenance industry.
South Asia, and Oceania Offers a Plethora of Opportunities to Manufacturers
The region of South Asia, and Oceania is the most rapidly expanding in terms of the predictive maintenance market. Increasing industrialization, the implementation of intelligent manufacturing techniques, and a surge in demand for advanced maintenance solutions all contribute to the expansion of the region.
South Asia, and Oceania are currently implementing predictive maintenance techniques to enhance operational efficiency across various sectors, including transportation, energy, and manufacturing. Further bolstering the expansion of predictive maintenance in this region are governmental initiatives that promote digital transformation and the swift incorporation of Internet of Things (IoT) technologies.
The competitive landscape of the predictive maintenance is marked by the presence of a diverse array of participants, including large multinational corporations, innovative start-ups, and established software and service providers. Major technology titans leverage their vast assets to offer comprehensive predictive maintenance solutions, often integrating them into broader enterprise software suites.
These companies invest heavily in research and development, perpetually enhancing their algorithms and predictive analytics capabilities. They also frequently engage in mergers and acquisitions to expand their market reach and diversify their offerings. Additionally, the market witnesses a significant presence of specialized predictive maintenance solution providers that concentrate exclusively on developing innovative software tailored to specific industries, such as manufacturing, energy, and healthcare.
Furthermore, the competitive landscape is characterized by the emergence of start-ups that offer innovation and agility to the market. Start-ups in this industry frequently introduce specialized solutions that focus on certain facets of predictive maintenance. To improve the scalability and accessibility of their products or services, they may utilize peripheral computing or cloud-based platforms.
With the maturation of the market, partnerships between established ecosystems and emerging businesses become more prevalent, nurturing an environment that encourages the integration of novel concepts and technologies. The emphasis on user-friendly interfaces, scalability, and the capability to deliver actionable insights further amplifies the competitive dynamics. Organizations are in search of predictive maintenance solutions that can be seamlessly integrated into their current operations, while also providing concrete benefits such as increased efficiency and decreased downtime.
Partnership
NTPC and International Institute of Information Technology-Naya Raipur have formed a collaborative partnership in July 2023 to establish the "IIITNR-COE on predictive maintenance," an esteemed centre of excellence dedicated to scholarly instruction and research and development-driven approaches concerning predictive maintenance tools and systems. Research will benefit from the field data supplied by NTPC, whereas IIIT-NR will impart knowledge and instruction regarding contemporary technologies.
Market Impact: By encouraging academic and research-driven advancements, the partnership between NTPC and IIIT-NR to establish an "IIITNR-COE on predictive maintenance" is anticipated to have a positive effect on the market for predictive maintenance. This collaboration represents a productive alliance between the academic and industrial sectors, which will presumably foster the growth of novel solutions and advance knowledge in the field of predictive maintenance technologies.
(Source: Times of India)
Collins Aerospace, an RTX company (NYSE: RTX), and Japan Airlines (JAL) jointly declared today that JAL will implement the Ascentia® maintenance performance monitoring solution from Collins Aerospace for its Boeing 787 fleet, effective June 2023. By leveraging sophisticated data analytics and machine learning algorithms, the cloud-based predictive maintenance solution assists airlines in enhancing aircraft reliability and optimizing maintenance operations. Ascentia can reduce unscheduled delays and increase aircraft availability by predicting potential maintenance issues and recommending corrective actions before their occurrence through the real-time analysis of flight data and maintenance records.
Market Impact: The implementation of the Ascentia® maintenance performance monitoring solution on Japan Airlines' Boeing 787 fleet through a collaboration between Collins Aerospace and the airline is anticipated to have a substantial influence on the predictive maintenance Market. A significant airline's implementation of this cloud-based predictive maintenance solution demonstrates that the industry as a whole acknowledges the value of machine learning and advanced data analytics in enhancing aircraft maintenance operations, decreasing downtime, and increasing overall dependability. This implementation will probably stimulate additional interest in and acceptance of comparable predictive maintenance solutions throughout the aviation industry.
(Source:PRN)
Macnica, Inc. introduced the Mpression Smart Motor Sensor in June 2023. This solution is a collection of components created by Analog Devices, Inc. (NASDAQ: ADI), headquartered in Massachusetts, USA, and led by CEO Vincent Roche. Analog Devices operates within the ASEAN region. Macnica Cytech Pte Ltd, a Macnica subsidiary, distributes Mpression Smart Motor Sensors throughout ASEAN nations
Market Impact: Macnica, Inc. introduced the Mpression Smart Motor Sensor in June 2023. This solution is a collection of components created by Analog Devices, Inc. (NASDAQ: ADI), headquartered in Massachusetts, USA, and led by CEO Vincent Roche. Analog Devices operates within the ASEAN region. Macnica Cytech Pte Ltd, a Macnica subsidiary, distributes Mpression Smart Motor Sensors throughout ASEAN nations.
(Source: BUSINESS WIRE)
Attribute |
Details |
Forecast Period |
2023 to 2030 |
Historical Data Available for |
2018 to 2022 |
Market Analysis |
US$ Million for Value |
Key Regions Covered |
|
Key Countries Covered |
|
Key Market Segments Covered |
|
Key Companies Profiled |
|
Report Coverage |
|
Customization & Pricing |
Available upon request |
By Solution:
By Deployment:
By Enterprise Size:
By End-use Industry:
By Region:
To know more about delivery timeline for this report Contact Sales
The market is anticipated to grow at a CAGR of 21.6% during the projected period.
The predictive maintenance market size was valued at US$8.6 billion in 2023.
The US held the largest market share in 2023.
Some of the prominent players in the market are Oracle Corporation, IBM, GE, Microsoft, Schneider Electric, PTC, Software AG, Cisco Systems, TIBCO Software, SAS Institute, and Hitachi.
By solution, the services segment is expected to grow at the fastest CAGR during the forecast period.