Neuromorphic Computing Market Size, Share and Growth Forecast for 2024-2031

Neuromorphic Computing Market by Application Type (Signal Processing, Image Processing, Data Processing, Object Detection), by Deployment (Edge, Cloud), by End Use (Consumer Electronics, Automotive, Healthcare, Military & Defense), by Component (Hardware, Software, and Services), and by Region

Industry: IT and Telecommunication

Published Date: August-2024

Format: PPT*, PDF, EXCEL

Delivery Timelines: Contact Sales

Number of Pages: 191

Report ID: PMRREP34726

Report Price

$ 4900*

Buy Now

Neuromorphic Computing Market Size and Share Analysis

The global neuromorphic computing market is expected to increase from US$5.4 billion in 2024 to US$20.4 billion by the end of 2031, securing a CAGR of 20.9 percent during the forecast period from 2024 to 2031.

Key Highlights of the Market

  • Advancements in neuromorphic hardware is one of the key market trends in the market.
  • Neuromorphic computing is expanding beyond traditional AI applications to sectors such as robotics, autonomous vehicles, healthcare diagnostics.
  • There is an increasing focus on developing neuromorphic algorithms, which can efficiently process as well as learn from complex data patters.
  • Consume electronics to get large revenue share in the neuromorphic computing market.
  • Neuromorphic computing finds applications in diverse fields such as robotics, autonomous vehicles, healthcare diagnostics, and cybersecurity.
  • North America to lead the neuromorphic computing market.

Attributes

Key Insights

Neuromorphic Computing Market Size (2024E)

US$5.4 Bn

Projected Market Value (2031F)

US$20.4 Bn

Global Market Growth Rate (CAGR 2024 to 2031)

20.9%

Historical Market Growth Rate (CAGR 2018 to 2023)

16.7%

North America Maintains a Dominant Position

Region

Market Share in 2023

North America

38.5%

Increase funding for research institutions and universities focusing on neuromorphic computing technologies. This can spur innovation and attract top talent to the region.

North America led the market and held a significant revenue share of 38.5% in 2023. Early adopters in the North American market, particularly in the US and Canada, are pioneering the application of neuromorphic computing systems.

A significant market trend in this region is the advancement of AI-based voice and speech recognition technologies. Integration efforts have focused on refining speech recognition engines to enhance overall voice experiences.

Edge Computing Maintains Leadership in Global Market

Attributes

Market Share in 2023

Edge Computing

73.5%

Edge computing emphasizes processing data closer to where it is generated (at the edge of the network), which is crucial for applications requiring low latency and real-time responses. Neuromorphic computing's ability to perform complex computations efficiently aligns well with these requirements.

Edge computing combined with neuromorphic computing is driving innovations in fields such as autonomous vehicles, industrial automation, healthcare devices, and smart cities, where rapid decision-making and efficient data processing are critical.  The edge segment led the market with a revenue share of 73.5% in 2023.

The increasing application of edge computing in identifying all body gestures for touchless interfaces, automobiles with sensitive voice controls, and internal intelligence for assistant robots are attributing to the segment’s growth.

The expansion of wireless networking sparked interest in the emerging computer paradigm of edge computing, which drives the development of the edge segment.

Moreover, neuromorphic computing supports low-power applications and on-device adaptability in the edge computing sector, which is fueling market expansion worldwide.

Consumer Electronics Responsible for a Sizeable Market Share

Neuromorphic computing architectures are known for their energy efficiency compared to traditional computing methods. This is crucial for consumer electronics where battery life and power consumption are critical factors influencing user experience and device usability.

Many consumer applications, such as virtual assistants, augmented reality (AR), and gaming, require real-time processing capabilities. Neuromorphic computing can handle these tasks efficiently, providing a seamless user experience without delay.

The consumer electronics segment to lead the market with a significant revenue share. The burgeoning consumer electronics sector, encompassing devices like laptops, PCs, and tablets, is driving a rising need for neuromorphic chips.

This surge is fueled by consumer preferences favoring compact, cost-effective products, necessitating the miniaturization of integrated circuits. This trend underscores the growth of the consumer electronics segment within the global neuromorphic computing market.

Market Overview and Trend Analysis

Neuromorphic computing is an emerging field that draws inspiration from the structure and function of biological neural networks to develop artificial intelligence and machine learning systems.

Unlike traditional computing architectures neuromorphic computing aims to replicate the parallel processing and distributed memory capabilities of the human brain.

Neuromorphic systems excel in tasks requiring real-time processing, adaptive learning, and cognitive capabilities. Applications include natural language processing, image and video recognition, autonomous navigation, and predictive analytics.

The rising adoption of renewable energy sources like solar and wind is a key growth factor. VPPs excel at seamlessly integrating these variable power sources into the grid. By aggregating distributed energy resources from homes, businesses, and even electric vehicles, VPPs can provide reliable power while reducing reliance on traditional fossil fuel plants.

Growing environmental concerns and government initiatives promoting clean energy are creating a strong market push for VPPs. These solutions contribute to decarbonization efforts by optimizing energy use and reducing reliance on fossil fuels. Additionally, VPPs can participate in electricity markets, providing renewable energy when demand is high and helping to balance the grid.  

Neuromorphic systems support cognitive computing tasks, such as complex decision-making, adaptive learning, and reasoning based on incomplete or uncertain information. This capability is valuable in healthcare diagnostics, financial analysis, and personalized user experiences.

Historical Growth and Course Ahead

Neuromorphic computing gained prominence as a promising alternative to traditional computing architectures, particularly for applications requiring low-power consumption and real-time data processing. the market for neuromorphic computing started to expand beyond research labs and into commercial applications.

Industries such as robotics, autonomous vehicles, healthcare, and IoT began adopting neuromorphic solutions for their ability to handle complex data patterns and operate efficiently at the edge. The market recorded a CAGR of 16.7% during the historical period.

Ongoing advancements in neuromorphic hardware, including novel designs and materials, will continue to enhance computational capabilities and energy efficiency.

Neuromorphic computing is expected to penetrate deeper into various industries, including aerospace, defense, finance, and telecommunications, driven by the need for faster and more efficient computing solutions.

Start-ups and established companies alike will focus on developing scalable and cost-effective solutions, expanding the accessibility of neuromorphic computing across different market segments. The market for neuromorphic computing is projected to exhibit a CAGR of 20.9% during the forecast period from 2024 to 2031.

Market Growth Drivers

Integration of Neuromorphic Computing with AI Applications

The integration of neuromorphic computing with AI applications represents a key driver for the market's growth. This integration leverages the unique capabilities of neuromorphic hardware to enhance the performance and efficiency of AI algorithm.

Neuromorphic computing facilitates the development and deployment of AI algorithms that can learn and adapt in real-time. By mimicking the brain's neural networks, neuromorphic systems excel in processing and recognizing complex patterns in data, making them ideal for tasks that require continuous learning and adaptation.

In autonomous vehicles, neuromorphic chips can enable real-time decision-making based on sensor inputs, enhancing safety and efficiency on the road. Similarly, in healthcare, neuromorphic systems can analyze medical data to assist in diagnostics and personalized treatment recommendations.

Advancements in Neuromorphic Hardware

Neuromorphic hardware development has entered a phase of rapid advancement, marked by breakthroughs in design, materials, and performance metrics. These advancements are crucial as they directly influence the capabilities and applications of neuromorphic computing systems.

Recent innovations in neuromorphic hardware have focused on enhancing energy efficiency and performance metrics. Traditional von Neumann architecture faces limitations in energy consumption, especially in processing tasks that require high computational intensity, such as AI and machine learning algorithms.

Neuromorphic hardware addresses these challenges by mimicking the brain's neural structure, enabling efficient computation using spiking neural networks (SNNs) and event-driven processing mechanisms.

Key advancements include the development of neuromorphic chips that integrate novel materials and architectures to optimize power consumption while improving computational speed and accuracy. For example, researchers are exploring memristors and other emerging nanotechnologies to create synaptic devices that can replicate the synaptic plasticity observed in biological neural networks.

Factors Impeding the Market

Software Ecosystem and Integration Challenges

Neuromorphic hardware operates fundamentally differently from traditional processors, requiring new programming paradigms and algorithms tailored to exploit its parallel processing and learning capabilities effectively.

Developing software that maximizes the potential of neuromorphic architectures requires specialized skills and tools, which are currently limited in availability.

Integrating neuromorphic computing into existing IT infrastructures and applications is challenging due to compatibility issues with conventional software frameworks and programming languages. This lack of interoperability complicates adoption across industries where seamless integration with existing systems is crucial.

There is a shortage of skilled professionals proficient in neuromorphic computing technologies. Training programs and educational resources focusing on neuromorphic hardware and software development are essential to nurture a capable workforce capable of driving innovation and application deployment

Complexity and Scalability of Neuromorphic Hardware

Neuromorphic hardware architectures are designed to mimic the intricate neural networks of the human brain. This requires innovative approaches to integrate massive numbers of neurons and synapses efficiently.

Designing such complex systems demands expertise in both neuroscience and semiconductor engineering, which limits the number of companies capable of developing these technologies

Fabricating neuromorphic chips involves specialized processes to ensure the precise emulation of neural structures while maintaining low power consumption and high computational efficiency.

Current manufacturing techniques may struggle to scale production to meet increasing demand. This results in higher production costs, limiting the affordability and accessibility of neuromorphic hardware for widespread adoption.

Future Opportunities for Neuromorphic Computing Market Players

Integration with Edge Computing Architectures

A compelling opportunity for neuromorphic computing lies in its integration with edge computing architectures. Edge computing refers to the concept of processing data closer to its source, typically at the edge of the network or device level, rather than in centralized data centers. This approach reduces latency, bandwidth usage, and enhances privacy and security by keeping sensitive data locally processed.

Competitive Landscape Analysis

Collaboration between tech companies, research institutions, and industry leaders is crucial for accelerating advancements in neuromorphic computing. This can involve joint research projects, development efforts, and commercialization strategies. These market players prioritize innovation in new products and strategic partnerships to enhance profitability and enrich customer engagements.

Key Industry Developments

In January 2024, Innatera made waves by unveiling its latest innovation, the Spiking Neural Processor T1, a neuromorphic microcontroller, at the CES 2024 show. This launch marks a significant stride forward in energy-efficient AI tailored for sensor-edge applications, spanning smart home devices, wearables, and IoT solutions.

In February 2024, SynSense and iniVation joined forces in a strategic move to meet surging demand for advanced intelligent vision solutions across consumer and industrial sectors. Their collaboration focuses on developing cutting-edge neuromorphic technology tailored for standalone processors, vision sensors, and integrated compute-in-sensor devices. This innovation is set to redefine capabilities in robotics, automotive systems, consumer electronics, and aerospace applications.

In Sep 2023, Researchers at Eindhoven University of Technology pioneered a groundbreaking approach: training neuromorphic chips via a biosensor to detect cystic fibrosis. This innovative "smart biosensor" mimics human brain communication, offering promising applications in point-of-care healthcare. It empowers chips to autonomously adapt to varying environmental conditions, heralding a new era in medical diagnostics.

Market Report Scope

Attributes

Details

Forecast Period

2024 to 2031

Historical Data Available for

2018 to 2023

Market Analysis

US$ Billion for Value

Key Regions Covered

  • North America
  • Europe
  • Asia Pacific
  • South America
  • The Middle East and Africa

Key Countries Covered

  • The United States
  • Canada
  • Germany
  • The United Kingdom
  • France
  • Italy
  • Spain
  • Russia
  • China
  • Japan
  • South Korea
  • India
  • Thailand
  • Malaysia
  • Indonesia
  • Australia
  • New Zealand
  • GCC Countries
  • South Africa  

Key Market Segments Covered

  • Application Type
  • Deployment
  • End Use
  • Component
  • Region

Key Companies Profiled

  • BrainChip Holdings Ltd.
  • Intel Corporation
  • Qualcomm
  • SynSense AG
  • Samsung Electronics Co. Ltd
  • IBM Corporation
  • SK Hynix Inc.
  • General Vision Inc.
  • GrAI Matter Labs
  • Innatera Nanosystems

Report Coverage

  • Market Forecast
  • Company Share Analysis
  • Competition Intelligence
  • DROT Analysis
  • Market Dynamics and Challenges
  • Strategic Growth Initiatives  

Customization & Pricing

Available upon request

Neuromorphic Computing Market Segmentation

By Application Type

  • Signal Processing
  • Image Processing
  • Data Processing
  • Object Detection
  • Others

By Deployment

  • Edge
  • Cloud

By End Use

  • Consumer Electronics
  • Automotive
  • Healthcare
  • Military & Defense
  • Others

By Component

  • Hardware
  • Software
  • Services

By Region

  • North America
  • Europe
  • Asia Pacific
  • South America
  • The Middle East and Africa

To know more about delivery timeline for this report Contact Sales

Companies Covered in This Report

  • BrainChip Holdings Ltd.
  • Intel Corporation
  • Qualcomm
  • SynSense AG 
  • Samsung Electronics Co. Ltd 
  • IBM Corporation 
  • SK Hynix Inc. 
  • General Vision Inc. 
  • GrAI Matter Labs
  • Innatera Nanosystems

Frequently Asked Questions

The integration of neuromorphic computing with AI applications is a significant driver for market growth.

The market is anticipated to secure a CAGR of 5.0% during the forecast period from 2024 to 2031.

Integration with edge computing architectures is a key opportunity in the market.

North America takes the charge in the market.

A few of the leading players in the market are BrainChip Holdings Ltd. Intel Corporation, and IBM Corporation.

Thank you for taking time to visit our website, click like if you found the information on this page useful?

This site uses cookies, including third-party cookies, that help us to provide and improve our services.
Google translate